Scalable many-light methods

Jaroslav Křivánek
Charles University, Prague

Instant radiosity

- Approximate indirect illumination by

Virtual Point Lights (VPLs)

1. Generate VPLs
2. Render with VPLs

Instant radiosity with glossy surfaces

- Large number of VPLs required
- True even for diffuse scenes
- Scalability issues

Scalable many-light methods

1. Generate many, many VPLs
2. Use only the most relevant VPLs for rendering

- Choosing the right VPLs
- Per-pixel basis
- Lightcuts [Walter et al 05/06]
- Per-image basis
- Matrix Row Column Sampling [Hašan et al. 07]

Scalability with many lights

Approach \#1: Lightcuts \& Multi-dimensional lightcuts

Walter et al., SIGGRAPH 2005/06
Slides courtesy Bruce Walter:
http://www.graphics.cornell.edu/~bjw/papers.html

Lightcuts: A Scalable Approach to Illumination

Bruce Walter, Sebastian Fernandez, Adam Arbree, Mike Donikian, Kavita Bala, Donald Greenberg

Program of Computer Graphics, Cornell University

Lightcuts

- Efficient, accurate complex illumination

Environment map lighting \& indirect Time 111 s

Textured area lights \& indirect Time 98s
(640x480, Anti-aliased, Glossy materials)

Scalable

- Scalable solution for many point lights
- Thousands to millions
- Sub-linear cost

Complex Lighting

- Simulate complex illumination using point lights
- Area lights
- HDR environment má
- Sun \& sky light
- Indirect illumination
- Unifies illumination
- Enables tradeoffs between components

Area lights + Sun/sky + Indirect

Lightcuts Problem

4
4

Visible
surface

$$
8
$$

Lightcuts Problem

Lightcuts Problem

Key Concepts

- Light Cluster
- Approximate many lights by a single brighter light
(the representative light)

Key Concepts

- Light Cluster
- Light Tree
- Binary tree of lights and clusters

Key Concepts

- Light Cluster
- Light Tree
- A Cut
- A set of nodes that partitions the lights into clusters

Simple Example

Three Example Cuts

Three Example Cuts

Good
Bad

Three Example Cuts

Three Example Cuts

Algorithm Overview

- Pre-process
- Convert illumination to point lights
- Build light tree
- For each eye ray
- Choose a cut to approximate the illumination

Convert Illumination

- HDR environment map
- Apply captured light to scene
- Convert to directional point lights using [Agarwal et al. 2003]
- Indirect Illumination
- Convert indirect to direct illumination using Instant Radiosity [Keller 97]
- Caveats: no caustics, clamping, etc.

- More lights = more indirect detail

Algorithm Overview

- Pre-process
- Convert illumination to point lights
- Build light tree
- For each eye ray
- Choose a cut to approximate the local illumination
- Cost vs. accuracy
- Avoid visible transition artifacts

Perceptual Metric

- Weber's Law
- Contrast visibility threshold is fixed percentage of signal
- Used 2\% in our results
- Ensure each cluster's error < visibility threshold
- Transitions will not be visible
- Used to select cut

Illumination Equation

result $=\sum_{\text {Ights }} M_{\mathrm{i}} G_{\mathrm{i}} V_{\mathrm{i}} I_{\mathrm{i}}$

Currently support diffuse, phong, and Ward

Illumination Equation

Illumination Equation

Cluster Approximation

result $\approx M_{\mathrm{j}} G_{\mathrm{j}} V_{\mathrm{j}} \sum_{\text {noghts }} I_{\mathrm{i}}$

j is the representative light

Cluster Error Bound

$$
\text { error } \leq M_{\mathrm{ub}} G_{\mathrm{ub}} V_{\mathrm{ub}} \sum I_{\mathrm{i}_{\mathrm{i} \text { ght }}}
$$

- Bound each term
- Visibility <= 1 (trivial)

- Intensity is known
- Bound material and geometric terms using cluster bounding volume

Cut Selection Algorithm

- Start with coarse cut (eg, root node)

Cut Selection Algorithm

- Select cluster with largest error bound

Cut Selection Algorithm

- Refine if error bound > 2\% of total

Cut Selection Algorithm

Cut Selection Algorithm

Cut Selection Algorithm

Cut Selection Algorithm

- Repeat until cut obeys 2\% threshold

Kitchen, 388K polygons, 4608 lights (72 area sources)

Error

Kitchen, 388K polygons, 4608 lights (72 area sources)

Combined Illumination

Lightcuts 1285
4608 Lights
(Area lights only)

Lightcuts 2905
59672 Lights
(Area + Sun/sky + Indirect)

Combined Illumination

Lightcuts 1285
4608 Lights
(Area lights only)
Avg. 259 shadow rays / pixel

Lightcuts 2905
59672 Lights
(Area + Sun/sky + Indirect)
Avg. 478 shadow rays / pixel (only 54 to area lights)

Error x 16

Scalable

- Scalable solution for many point lights
- Thousands to millions
- Sub-linear cost

Lightcuts

- Problem: Large cuts in dark areas

Lightcuts Recap

- Unified illumination handling
- Scalable solution for many lights
- Locally adaptive representation (the cut)
- Analytic cluster error bounds
- Most important lights always sampled
- Perceptual visibility metric
- Problems
- Large cuts in dark regions
- Need tight upper bounds for BRDFs

Multidimensional Lightcuts

Bruce Walter
Adam Arbree
Kavita Bala
Donald P. Greenberg

Program of Computer Graphics, Cornell University

Problem

- Simulate complex, expensive phenomena
- Complex illumination
- Anti-aliasing
- Motion blur
- Participating media
- Depth of field

$$
\text { Pixel }=\iint_{\text {Time }} \int_{\substack{\text { Pixel Lights } \\ \text { Area }}} \int_{\mathbf{L},} \mathrm{L}(\mathbf{X}) \ldots
$$

Problem

- Simulate complex, expensive phenomena
- Complex illumination
- Anti-aliasing
- Motion blur
- Participating media
- Depth of field

$$
\text { Pixel }=\iint_{\text {Volume Time }} \int_{\substack{\text { Pixel Lights } \\ \text { Area }}} \int(X, \omega) \ldots
$$

Problem

- Simulate complex, expensive phenomena
- Complex illumination
- Anti-aliasing
- Motion blur
- Participating media
- Depth of field

$$
\text { Pixel }=\iint_{\text {Aperture }} \int_{\text {Volume }} \int_{\text {Time }} \int_{\text {Pixel Lights }} \int_{\text {Area }} \mathrm{L}(\mathbf{X}, \omega) \ldots
$$

Problem

- Complex integrals over multiple dimensions
- Requires many samples

Multidimensional Lightcuts

- Solves all integrals simultaneously
- Accurate
- Scalable

Point Sets

- Discretize full integral into 2 point sets
- Light points (L)
- Gather points (G)

Point Sets

- Discretize full integral into 2 point sets
- Light points (L)
- Gather points (G)

Point Sets

- Discretize full integral into 2 point sets
- Light points (L)
- Gather points (G)

Point Sets

- Discretize full integral into 2 point sets
- Light points (L)
- Gather points (G)

Discrete Equation

- Sum over all pairs of gather and light points
- Can be billions of pairs per pixel

$$
\text { Pixel }=\sum_{(\mathrm{j}, \mathrm{i}) \in \mathbf{G \times L}} \mathrm{S}_{\mathrm{j}} M_{\mathrm{ji}} G_{\mathrm{ji}} V_{\mathrm{ji}} I_{\mathrm{i}}
$$

Product Graph

- Explicit hierarchy would be too expensive
- Up to billions of pairs per pixel
- Use implicit hierarchy
- Cartesian product of two trees (gather \& light)

Product Graph

Product Graph

Gather tree

Product Graph

Gather tree

Product Graph

Product Graph

Product Graph

Product Graph

Product Graph

Cluster Representatives

Cluster Representatives

Error Bounds

- Collapse cluster-cluster interactions to point-cluster
- Minkowski sums
- Reuse bounds from Lightcuts

- Compute maximum over multiple BRDFs
- Rasterize into cube-maps
- More details in the paper

Algorithm Summary

- Once per image
- Create lights and light tree
- For each pixel
- Create gather points and gather tree for pixel
- Adaptively refine clusters in product graph until all cluster errors < perceptual metric

Scalability

- Start with a coarse cut
- Eg, source node of product graph

Scalability

- Choose node with largest error bound \& refine - In gather or light tree

Scalability

- Choose node with largest error bound \& refine - In gather or light tree

Scalability

- Repeat process

Algorithm summary

- Until all clusters errors < perceptual metric
- 2\% of pixel value (Weber's law)

Results

- Limitations
- Some types of paths not included
- Eg, caustics
- Prototype only supports diffuse, Phong, and Ward materials and isotropic media

Roulette

7,047,430 Pairs per pixel Time 590 secs
Avg cut size 174 (0.002\%)

Scalability

Image time vs. Gather points

Metropolis Comparison

Kitchen

5,518,900 Pairs per pixel Time 705 secs
Avg cut size 936 (0.017\%)

180 Gather points X 13,000 Lights = 234,000 Pairs per pixel Avg cut size 447 (0.19\%)

114,149,280 Pairs per pixel Avg cut size 821 Time 1740 secs

Scalability with many lights

Approach \#2: Matrix Row-Column sampling

Hašan et al., SIGGRAPH 2007

Slides courtesy Miloš Hašan:
http://www.cs.cornell.edu/~mhasan/

Improving Scalability and Performance

 Bruteforce:

10 min
\downarrow

3.8 sec

13 min
\downarrow

13.5 sec

20 min
\downarrow

16.9 sec

A Matrix Interpretation

Problem Statement

- Compute sum of columns

Lights

Low-Rank Assumption

- Column space is (close to) low-dimensional

Ray-tracing vs Shadow Mapping

Computing Column Visibility

- Regular Shadow Mapping

Row-Column Duality

- Rows: Also Shadow Mapping!

Image as a Weighted Column Sum

- The following is possible:

Compute small subset of columns

compute weighted sum

- Use rows to choose a good set of columns!

The Row-Column Sampling Idea

compute rows $\begin{gathered}\text { chowstocchonsse } \\ \text { Galuwenghtr } \\ \text { weights? }\end{gathered} \quad \begin{gathered}\text { compute columns }\end{gathered} \begin{gathered}\text { weighted } \\ \text { sum }\end{gathered}$

Clustering Approach

Reduced Matrix

Weights and Information Vectors

- Weights w_{i}
- Norms of reduced columns
- Represent the "energy" of the light
- Information vectors X_{i}
- Normalized reduced columns
- Represent the "kind" of light's contribution

Visualizing the Reduced Columns

Reduced columns:
vectors in highdimensional space

Monte Carlo Estimator

- Algorithm:

1. Cluster reduced columns
2. Choose a representative in each cluster, with probability proportional to weight
3. Approximate other columns in cluster by (scaled) representative

- This is a Monte Carlo estimator
- Which clustering minimizes its variance?

The Clustering Objective

- Minimize:

- where: $\operatorname{cost}(C)=\sum w_{i} w_{j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}$

cost of a cluster

$$
i, j \in C
$$

sum over all pairs in it

weights between information vectors

Clustering Illustration

How to minimize?

- Problem is NP-hard
- Not much previous research
- Should handle large input:
- 100,000 points
- 1000 clusters
- We introduce 2 heuristics:
- Random sampling
- Divide \& conquer

Clustering by Random Sampling

\longleftarrow Very fast (use optimized BLAS)

- Some clusters might be too small / large

Clustering by Divide \& Conquer

Splitting small clusters is fast

- Splitting large clusters is slow

Combined Clustering Algorithm

Combined Clustering Algorithm

Full Algorithm

Assemble rows into reduced matrix

Cluster reduced columns

Compute rows (GPU)

Choose representatives

Compute columns (GPU)

Weighted sum

Example: Temple

- 2.1m polygons
- Mostly indirect \& sky illumination
- Indirect shadows

Our result: $16.9 \mathrm{sec}(300$

Reference: 20 min (using all 100k lights)

Example: Kitchen

- 388k polygons
- Mostly indirect illumination
- Glossy surfaces
- Indirect shadows

Our result: 13.5 sec + 864 columns)
(432 rows

Reference: $13 \mathrm{~min} \quad$ (using all 100k lights)

Example: Bunny

- 86gk polygons
- Incoherent geometry
- High-frequency lighting
- Kajiya-Kay hair shader

Our result: 3.8 sec
(100 rows
Reference: 10 min
(using all

+ 200 columns) 100k lights)

